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We introduce a new algebraic invariant P(G, S) for pairs of groups Ss G. It is related to the 

geometric end invariant of Houghton and Scott, but is more easily accessible to calculation by 

cohomological methods. We develop various techniques for computing P(G,S) when G and S 

enjoy certain duality properties. 

1. Introduction 

Let G be any group and S any subgroup. Let PS denote the power set of G and 

let gsG denote the set of S-finite subsets of G, 

gsG := {A c G 1 A c SF for some finite subset F of G). 

Both $‘G and gsG admit the action of G by right multiplication, and can be 

regarded as right G-modules over the field IF of two elements. In analogy to the 

classical theory of ends of a group [6,7,15] we define an algebraic number of ends 

of the pair (G,S) in the following way. 

Definition 1.1. P(G, S) := dimF(qG/gsG)‘. 

This end invariant is implicit in our earlier work [9, 10, 111. It is closely related to 

the geometric end invariant e(G,S) introduced by Houghton [8] and Scott [12]. In 

the following section we shall also consider a common generalization to exhibit the 

similarities between the two definitions. 

In this paper we concentrate on techniques for computing P(G,S). Our method 

is based on the following simple lemma: 

Lemma 1.2. If S has infinite index in G, then P(G, S) = 1 + dimF H’(G, gsG). 
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This lemma is particularly useful when G and S enjoy certain duality properties; 

many examples can be found in Section 4 of this paper. In particular we shall show 

that P(G,S) may be any natural number or infinite. 

An important concept in our theory is the commensurizer of S in G, the set of 

g E G such that S and Sg are commensurable, which we denote by Comm,(S). This 

is the largest subgroup of G which admits an action by left multiplication on @,scI 

and on (PG/$sG)‘. Observe that Comma(S) only depends on the commensur- 

ability class of S, and that it contains every element of this class as a subgroup. In 

the third section we see that the theory of relative ends is very similar to the classical 

theory when Comma(S) is large enough. We shall prove the following theorem: 

Theorem 1.3. Let G and S be finitely generated and suppose that S has infinite index 
in Comm,(S). Then E(G, S) is either 1, 2, or infinite. In the case when P(G, S) = 2 
there are subgroups Go and So of finite index in G and S, respectively, such that S, 
is normal in G, and G,/S, is infinite cyclic. 

It would be very interesting to know whether there is an analogue of Stallings’ 

Structure Theorem [14] for relative ends. Scott [12] has pointed out that when G 

splits over S, then e(G, S) L 2, and in [9] we also observe that the kernel of the 

restriction map 

res: : H’(G, @sG) --t H’(S, ,?FsG) 

must be non-zero in this situation. We conjecture that for finitely generated groups 

G and S the non-vanishing of this kernel implies that G splits over some subgroup 

related to S. 

2. Relative ends 

Let M be a right FS-module. There are two ways of constructing an FG-module 

from M, by induction and coinduction: 

Indf M := @ Mg= MC&s FG, 
g~s\o 

Coind: M := n Mg~Hom,,(FG, M). 
gEs\G 

The inclusion of the direct sum into the Cartesian product induces an embedding 

of G-modules, natural in M, 

j: : Indf M-+ Coind: M, 

whose cokernel we denote by End: M. 
Since [FG is free as an FS-module, the functors Indf and Coindf are exact, and 

so is End:. If M is non-zero, then _I~ ” is an isomorphism precisely if S has finite in- 

dex in G. If S has infinite index in G, then (Indf M)‘= 0. 
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Definition 2.1. e(G, S; M) := dim,(Endf M)‘. 

The elementary properties enjoyed by e(G, S; M) are summarized in the following 

lemma: 

Proposition 2.2. Let SI T be subgroups of G and let M be an S-module. 
(i) Zf/G:Sl<m, then e(G,S;M)=O. 

(ii) Zfe(G,S;M)=O andM’#O, then IG:Sl<c=. 
(iii) Zf S is finitely generated and normal in G, then e(G, S; M) = e(G/S, 1; MS). 

(iv) Zf IG: TI < 00, then e(G,S;M)=e(T,S;M). 
(v) Zf IG : TI = co, then e(G, S; M) = e(G, T; CoindlM). 

(vi) Zf 1 T: S I< 03, then e(G, S; M) = e(G, T; CoindlM). 

Proof. Parts (i) and (ii) follow immediately from the above remarks. If S is normal 

in G, then we have an isomorphism of G/S-modules, natural in M, 

H’(S, Coindf M) E Coind?” H’(S,M) for i = 0, 1,2, . . . . 

If S is also finitely generated, then 

W’(S, Ind: M) z Indr’S H’(S,M) for i=O and 1. 

In particular, the induced map H’(S, jz) is injective, thus 

(End: M)‘= End? MS, 

from which part (iii) follows. 

To prove the remaining three parts of the proposition, we observe that the 

canonical isomorphism Coind: ME Coindg CoindlM restricts to an embedding 

i : Ind: M+ Ind: CoindiM. 

Thus there is an epimorphism 

p : End: M-t End: Coindl M, 

with kerpscoker i. On the other hand, Indf ME Indg IndlM, which means that 

i = IndFjs’, so we have a short exact sequence 

O-+Ind~End~M-‘End~M+End~Coind~M+O. 

Now if IG: TIC 03, then IndF= Coind:, therefore End;=0 and 

(End~M)G~(Ind~End~M)G~(Coind~End~M)G~(End~M)T, 

by Shapiro’s lemma, thus (iv) holds. If /G: Tl = m, then (Indg EndlM)‘=O, 

which implies (v). Finally, if 1 T: S / < 03, then EndcM=O, and (vi) follows. 0 

In the simplest case, when S is the trivial subgroup and M equals F, we obtain 

the classical number of ends of G. The geometric and algebraic number of ends of 



200 P. H. Kropholler, A4.A. Roller 

the pair (G,S) can also be seen as special cases of the general definition: 

e(G, S) = e(G, S; Q, e”(G, S) = e(G, S; 9%). 

The next two lemmas describe the specializations of Proposition 2.2. to e(G,S) 

and @G, S). For the proof of Lemma 2.3(iv) and (v) we refer to Scott’s article [12]. 

Lemma 2.3. (i) e(G, 1) = e(G). 

(ii) e(G,S)=O precisely if IG: SI < 03. 
(iii) If IG, : GI < M, then e(G,, S) = e(G, S). 
(iv) If Nis a normal subgroup of G which is S-finite, then e(G, S) = e(G/N, SN/N). 
(v) If T contains S as a subgroup of finite index, then e(G, T)<e(G, S) 5 

IT: Sle(G, T), and these inequalities are the best possible. 0 

Lemma 2.4. (i) C(G, 1) = e(G). 

(ii) P(G, S) = 0 precisely if / G : S I< 03. 

(iii) If /G1 : GI < co, then P(G1, S) = C(G, S). 
(iv) If S is finitely generated and normal in G, then P(G, S) = @G/S). 
(v) If T contains S as a subgroup of finite index, then P(G, T) = P(G, S). 

(vi)If IG:Tl= 03 and SIT, then B(G,S)<C(G, T). Cl 

Remarks. (1) Let G be the free group of rank two and S its commutator subgroup, 

then P(G, S) = e(G) = 03, whereas e(G, S) = e(G/S) = e(Z x Z) = 1. This shows that 

the condition that S be finitely generated cannot be omitted in Lemma 2.4(iv) above. 

(2) Lemma 2.4(vi) shows that P(G, S) only depends on the commensurability class 

of S in G. This also follows from the simple fact that S and Tare commensurable 

subgroups of G if and only if gsG=gTG. 

(3) A well-known theorem of Hopf [7] says that the classical number of ends of 

a group equals 0, 1, 2 or infinity. It should be noted that only for groups G with 

one end the number P(G,S) may provide some interesting information about the 

embedding of S into G. If G has two ends, then any subgroup is either finite or has 

finite index in G, and if e(G)= co, then P(G,S)= co for all subgroups S of infinite 

index. 

(4) To prove Lemma 1.2 of the introduction assume that S has infinite index in 

G and consider the long exact sequence 

O~MS~(EndscM)‘~H1(G,IndSG~)-,H’(S,M)-t.... 

If A4 equals g’s, then MS= [F and H](S, M) = 0 by Shapiro’s Lemma. 

The final lemma in this section describes the relation between the two different 

end invariants. 

Lemma 2.5. (i) e(G, S) 5 P(G, S). 

(ii) If S is finitely generated and P(G, S) is finite, then there exists a subgroup So 
of finite index in S, such that e(G, SO) = P(G, So). 
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Proof. The first statement follows from the fact that 1F embeds into WS as the S- 

invariant submodule, together with the left exactness of (End: -)‘. 

For the proof of (ii) we consider the action of S by left multiplication. With 

respect to this action the module @sG is a direct sum of copies of the coinduced 

module P’s, and if S is finitely generated, then H’(S, -), computed with the left ac- 

tion, commutes with direct sums. Now H’(S, g,sG) = 0, thus the sequence 

0 --t s(@sG) + ‘(9G) -+ ‘(End: .9’S) --f 0 

is exact, which implies that ‘(End: 9s)~ End: IF. We assume that End: 9’S is 

finite as a set, so S has a subgroup Se of finite index which acts trivially on this 

module, and since the left action commutes with the right action it follows that 

e(G, S,) = Z(G, S,). 0 

3. The classical case 

Throughout this section we assume that G is finitely generated, so we can consider 

the Cayley graph r=T(G,X) of G with respect to some finite set X of generators. 

We shall need some well-known results concerning this. In the first, which was 

proved by Scott [12], we shall say that a subset C of G is connected if it is the vertex 

set of some connected subgraph of r. 

Lemma 3.1. If S is finitely generated, then every S-finite subset A of G is contained 
in some connected S-finite subset C of G. 

Proof. For the convenience of the reader, we record the basis of Scott’s argument 

here. There exists a finite set D, such that A c SD, and a finite set E of generators 

of S. Now choose a finite connected set F containing DUEU (l}, then C := SF 
satisfies the conditions of the lemma. 0 

For a subset C of G, set 6C := UXcX (C+ Cx-‘). If dC denotes the set of edges 

in r which have exactly one vertex in C, then 6C is precisely the vertex set of dC. 
In the following version of a lemma of Cohen [3, Lemma 2.71 we say that two 

subsets A and B of G are nested if and only if at least one of the inclusions 

ACB, ACcB, AcBC, ACcBC 
holds. 

Lemma 3.2. Let A and B be subsets of G, and let C and D be connected subsets of 
G which contain 6A and 6B respectively. If C fl D = 0, then A and B are nested. q 

We say that a subset A of G is S-almost invariant if it represents an element of 

(~G/9-sG)G, i.e. if A + Ag is S-finite for all g E G. Since G is finitely generated, 
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the set A is S-almost invariant precisely if &I is S-finite. As a consequence of 

the previous two lemmas we obtain the following form of Scott’s Lemma [12, 

Lemma 4.41. 

Lemma 3.3. If S and Tare finitely generated subgroups of G, A is an S-almost in- 
variant subset of G and B is a T-almost invariant subset of G, then there is a finite 
subset F of G such that for all g in G \ SFT, the subsets A and gB are nested. 

Proof. Since A is S-almost invariant, it follows that 6A is S-finite, and we may 

choose, using Lemma 3.2, a connected S-finite subset of G containing 6A. Similarly, 

there is a connected T-finite subset D of G containing 6B. The left action of G on 

itself by multiplication gives rise to an action on I-, and so if g E G is such that 

CngD = 0, then A and gB are nested, by Lemma 3.2. Thus we can take F to be any 

finite subset of G such that GYP’ c SFT. 0 

Now we come to the proof of Theorem 1.3. Here we shall combine Cohen’s proof 

of the classical characterization of groups with two ends [3, Lemma 2.91 with the 

ideas used in the final stage of the proof of Theorem A in [9]. 

Proof of Theorem 1.3. We assume that 1 <e”(G, S)< 00. Since @G, S) > 1 we may 

choose some proper S-almost invariant set A in G, i.e. neither A nor AC is S-finite. 

For each g E Comm,(S) the set gA is again S-almost invariant, and since @(G, S) is 

finite, the subgroup 

has finite index in Comm,(S). Nothing is lost if we replace S by SflH and so 

assume that S is contained in H. This implies that P(G, S) = e(G, S), therefore by 

varying A by an S-finite amount we can arrange that A = SA. Using Lemma 3.3 we 

may choose a finite subset F of H such that for all gE H \SFS the subsets A and 

gA are nested. Since A is proper and gA + A is S-finite this means that either A L gA 
or gA c A. But the set of all g E G such that gA = A is S-finite, therefore by enlarging 

the finite set F if necessary, we may assume that for all g E H \SFS one of the strict 

inclusions 

gACA or ACgA 

holds. Now Fis a subset of Comma(S), therefore SE’S is S-finite and there actually 

exists an element ge H \SFS. By interchanging A with its complement if necesary, 

we can arrange that for some element agA we have 

gAcA\(a). 

Then g”A c_ A \ {a} for all positive integers n, thus the cyclic group 2 generated by 

g is finite. Since we have arranged that A = SA, it also follows that Z tl S = 1. 
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Next we claim that 

n g”A=0. 
?I21 

Suppose that b is an element of that intersection, then for all n 2 1 we have 

b E g”A. Therefore 

g -‘kAb-‘nACa-‘, 

which is S-finite, but that implies that ZflS is non-trivial, and we have reached a 

contradiction. It follows that 

A= u (g”A\g ‘+‘A)= u g”(A\gA)cZ(A\gA). 
fl>O i720 

By a similar argument we can now show that n,,, g-“AC = 0 and AC c Z(gAC\AC). 
Hence 

G=AUACLZ(gA+A), 

and since g is an element of H, gA + A is S-finite. 

If z is any element of Z, then Sz is commensurable with S, and in particular each 

h in Sz has some power in S. It follows that S” is contained in SFS. However, SFS 
is S-finite, so we conclude that (S: Sfl Sz ( I (S \SFS ( for each z. Since S is finitely 

generated, this bound on the indices of SnSz in S allows us to conclude that 

So := nzEz S’ has finite index in S, and it is obviously normalized by Z. Now the 

group Go :=ZS, has finite index in G, and so P(G,S)=P(Go,So) =e(Z) =2. 0 

Remark. Suppose that G and S are finitely generated and S has infinite index in its 

normalizer. Then Theorem 1.3 holds with P(G, S) replaced by e(G, S). This result 

has also been proved by Houghton [8]. 

Corollary 3.4. Assume that G and S are finitely generated and that P(G, S) = 2. Then 
the set (TI G / T is commensurable with S and e(G, T) = 2) contains a unique 
maximal element St. Furthermore, No(S+)=Commo(S+) and No(St)/St is iso- 
morphic to 1, C,, C, or C, * C,. 

Proof. If S has finite index in its commensurizer C, then C is the unique maximal 

element of the commensurability class of S. Choose a proper S-almost invariant sub- 

set A of G, then the group 

St :={g~C~gA+A~~sG} 

has index at most two in C. If T is any group commensurable with S, then 

e(G, T) = 2 holds precisely when T is contained in St. 

If S has infinite index in C, then we may choose subgroups G, and So as in 

Theorem 1.3. Observe that C contains Go as a subgroup of finite index, therefore 

s, :=n go c Si has finite index in So and is normal in C. The group C/S, has two 
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ends, thus it contains a unique maximal normal finite subgroup St/S,; further- 

more, C/St is isomorphic to C, or C2* C,. By Lemma 2.3 we have e(G,S+) = 

e(C, St) = e(C/S+) = 2. 

In the case when C/St is infinite cyclic, the group St is the unique maximal ele- 

ment of the commensurability class of S. If C/St is isomorphic of C, * C,, then 

any maximal subgroup T in this class contains St as a subgroup of index two, so 

e(G, T) = e(C, T) = e(C, * C,, C,) = 1. In view of Lemma 2.3(iv) it is now clear that 

a subgroup T commensurable with S satisfies e(G, T) = 2 if and only if T is contained 

in S’. 0 

4. Duality groups 

We shall assume that the reader is familiar with the theory of duality groups [ 1,2], 

but to fix notations we make a few preliminary remarks. A group G is said to be 

of type FP over iF if the trivial module 1F has a finite resolution 

of finitely generated non-zero projective iFG-modules. It follows in particular 

that if cd, G= n, then the left [FG-module D o :=H”(G, [FG) does not vanish. If, 

furthermore, 

H’(G,[FG)=O for i=O ,..., n- 1, 

then G is a duality group of dimension n, or short a D”-group, and Do is called the 

dualizing module, for there are natural isomorphisms for all integers i, 

H,(G, -)=H”-‘(G, Hom,(D,, -)), 

where G acts diagonally on the tensor product and on the Horn-group. If the 

dualizing module Do is isomorphic to iF, then G is called a Poincart duality group, 

for short a PD”-group. If G is just of type FP, then the duality isomorphisms exist 

at least for i= n. 

Lemma 4.1. (i) Suppose that G is a D”-group and S is a subgroup of type FP with 
cdIFS=n-1. Then H1(G,9’sG)~Hom,s(Ds,~S@D,). 

(ii) Zf G is a PD”-group, then P(G, S) = 1 + dim, Ds. 
(iii) Zf S is a PD”- ‘-group, then P(G, S) - 1 equals the dimension of the largest 

locally finite-dimensional ES-submodule of Do. 

Proof. (i) Using the duality isomorphism for G we obtain 
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It is well known that (Ind: M) @NE Indf(M@ Resz N) for an S-module M and a 

G-module N, where the tensor products have diagonal G- and S-action, respectively. 

Now we have 

z H, _ 1 (S, 9’S& DG), by Shapiro’s Lemma, 

= Hom,s(&, gS& Do), by duality for S. 

(ii) If G is a PD”-group, then Do= F, therefore 

H’(G, gsG) E Hom,s(Ds, 9s) = Hom,(Ds, iF). 

(iii) Let S be a PD”-l-group, then it follows from (i) that 

H1(G,&G)=(RS@Do)S. 

If .!FS@D, contains an element CdCDG A, @d which is fixed by S, then the 

IF-module spanned by the finite set {d E Do 1 A, # 0} is invariant under the action of 

S. Assume now that M is a finite-dimensional ES-module. Then the action of S 

factors through some finite quotient group Q, and 

The lemma now follows. 0 

A well-known theorem of Strebel [16] says that a subgroup S of a PD”-group G 

has cohomological dimension n if and only if S has finite index in G. The following 

corollary to Lemma 4.1 may be seen as a supplement to Strebel’s Theorem. 

Corollary 4.2. Let G be a PD”-group and S a subgroup of type FP. Then 
cdFS<n-2precisely ifE(G,S)=l. 

Proof. The proof of Lemma 4.1 shows that H’(G, gsG) vanishes when cd, S< n - 2 

and is non-zero when cd, S= n - 1. If S has cohomological dimension n, then by 

Strebel’s Theorem it also has finite index in G, and then P(G, S) = 0. 0 

If S is a duality group, then by a theorem of Farrell [l, Theorem 9.81 the dualizing 

module D, is either isomorphic to [F or infinite dimensional as an [F-module. Thus 

we have 

Corollary 4.3. Let G be a PD”-group and S a D”- ‘-subgroup. Then either 
P(G,S)=m or S is a PD”-’ group, in which case P(G, S) = 2. q 
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Proposition 4.4. Let G be a torsion-free PD3-group and S a subgroup of type FP, 

then one of the following holds: 
(0) e”(G, S) = 0 o S has a finite index in G; 
(1) P(G, S) = 1 ej S is a free group; 
(2) P(G, S) = 2 @ S is a PD2-group; 

(00) P(G, S) = 03. 

Proof. The equivalence (0) follows from Lemma 2.4(ii). By the Theorem of 

Dunwoody [5] a torsion-free group has cohomological dimension one over iF if and 

only if it is a free group, so (1) follows from Corollary 4.2. It remains to consider 

the case when 1 < P(G, S) < 03 and cd, S = 2. In view of Remark (2) in [ 1, $9.81 we 

may assume that S is a free product Si *S,, where S, is a D2-group. By the 

Mayer-Vietoris sequence for free products, H,(S, Y’s) z H2(S1, PS) @ H2(S2, YS). 

Denoting the dualizing module of Si by D, we obtain 

H,(S,, .KS) = Horn,,,@, ZJ’S) = n Horn@, t F). 
[E S/.sI 

Recall that 

dim, H,(S, SlS) = dim, H’(G, gsG) = P(G, S) - 1, 

which we assume to be finite. Therefore S, must have finite index in S, which 

means that S itself must be a duality group, and by Corollary 4.3 it follows that (2) 

holds. 0 

Remark. If G is a PD2-group and S is any subgroup, then one of the following 

holds: 

(0) P(G, S) = 0 # S has finite index in G; 

(1) P(G, S) = 1 * S is the trivial group; 

(2) g(G, S) = 2 * S is an infinite cyclic group; 

(0~) C(G, S) = 03 e S is a non-cyclic free group. 

As another application of Lemma 4.1 we consider the one relator group G := 

(x, y lxy =yx2>. This can be viewed as an ascending HNN-extension over the base 

group X, the infinite cyclic group generated by x, thus by [l, Proposition 9.16(b)], 

G is a D2-group. 

Proposition 4.5. Let G :=(x, y 1 xy =yx2> and X :=(x>. For any subgroup S of G 

one of the following holds: 
(0) P(G, S) = 0 es S has finite index in G; 
(1) &(G,S)= 1 * SnX= 1; 

(w) e”(G, S) = co # SnX is non-trivial, and IG : S/ = 03. 

Proof. The dualizing module of G can be computed from the Mayer-Vietoris 

sequence or using Lyndon’s resolution for one relator groups (see [l, Exercise to 
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$9.71); it has the form D,= FG/I, where I is the left ideal generator by the Fox 

derivatives of the relator, i.e. I:= [FG(y+x+ 1) + IFG(x*+ 1). Observe that G is a 

semi-direct product of the normal closure N of X and the infinite cyclic group Y 

generated by y. Furthermore, N is isomorphic to z[1/2]. This means that every 

element of G can be written as a product ykxq, with k E Z and q E Z[ l/2] uniquely 

determined. 

We now claim that the group ring [FG, viewed as a Y-module, decomposes as a 

direct sum of I and J := @05q< 1 lFYxq. To show that Z and J intersect trivially, 

consider for (k, q) EL x L[1/2] the functions Ak,q E Horn&G, Q, defined by 

Ak,,(yk’xq’)= 1 # k=k’ and q-q’EZ. 

If r = s(y + x + 1) + t(x* + 1) for some s, t E IFG, then a simple calculation shows that 

&,q(~Y~r)=&,q(s(Y+x+l)Y~‘)=&,q(s)+&+1,2q(~). 

Here we assume that r E J, then Ak,q(ry.yl) = 0 for l/2 I q < 1, and 

Ak,q(s) = Ak+ 1,2q (s) for 1/25q<l. 

Therefore Ak&) either vanishes for all pairs (k,q) or is non-zero for an infinite 

number of pairs (k,q). Since the latter is impossible, it follows that Ak,q(ry-l)=O 

for all k and q, and therefore r=O. 

Secondly, observe that for every q E Z[ l/2] there is a q’ with 0 5 q’< 2 such that 

ykxq=ykxq’ (modI). If lsq<2, then 

ykx~~ykx~-1(y+l)=yk'1x~-(2-q)+ykx~-' (m&I). 

Repeating this process, if necessary, we can show that any element of [FG/I can be 

represented by an element of J, and our claim follows. 

We have now proved that D, is free of infinite rank as a Y-module. In view of 

Lemma 4.1 this means that P(G, Y) = 1. On the other hand, the element ykxq + Z of 

D, is stabilized by x2’ mk, which implies that DG is locally finite as an X-module 

and E(G,X) = 03. 

Let S be any subgroup of G. The equivalence (0) is proved in Lemma 2.4(ii), and 

if S is trivial, then (1) holds. Now suppose that S is a non-trivial subgroup of infinite 

index in G. If sflX is non-trivial, then 

P(G,S)IC(G,S~~)=P(G,X)=~~. 

Otherwise S intersects N trivially, so S must be infinite cyclic and generated by 

some element ykxq with ks: 1. Let Yk denote the cyclic group generated by yk and 

Gk : YkN. It iS easy to find an automorphism of Gk which maps s to Yk, therefore 

b(G, S) = P(Gk, S) = d(Gk, Y,) = P(G, Y) = I. 

This completes the proof of our proposition. 0 

We conclude this section with examples of pairs (G,S) for which e and e” take 

values other than 0, 1, 2 or infinity. The first example is due to Scott [12]. 
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Proposition 4.6. Let G be the fundamental group of a closed surface F and let S 
be the fundamental group of a compact incompressible subsurface X of F. Then 
e(G,S) equals the number of boundary components of X. 0 

Observe that by the above remark d(G, S) equals 0,2 or infinity for all these pairs. 

As an example for the next proposition let Gi be a knot group and S the free 

abelian subgroup of rank two generated by the meridian and a longitude of the 

knot. If the knot is prime, then (G,, (S}) is a PD,-pair in the sense of Bieri and 

Eckmann [2]. If the knot space is also hyperbolic, then it follows from [ 13, Proposi- 

tion 4.5(ii)] that S is malnormal in G,, which means that Sfl Sg = 1 for all g E Gi \S. 

Proposition 4.1. Suppose that G = G , *s G2 is a free product with amalgamation, and 
(a) (G,, {S}) is a PD3-pair, 
(b) S is free abelian of rank two, 
(c) S is malnormal in G,, 
(d) G2 is free abelian of rank two and S has index n in GZ. 

Then b(G,S) equals n. 

Before we can prove this result we need some more information about the 

embedding of S in G. 

Lemma 4.8. Under the hypothesis of Proposition 4.5 the following hold: 
(i) G2G1={g~GISgr)G1>1}. 

(ii) G,={gEG1SgnG2>1}. 

Proof. This can be seen most easily by considering the tree Y which corresponds to 

the splitting of G over S, according to the theory of Bass and Serre [4]. This is an 

oriented tree which admits a left action of G, such that G acts transitively on the 

edges of Y and fixed-point freely on the vertices. Furthermore, there is an edge e 

of Y such that e, its initial vertex ze and its terminal vertex re have stabilizers S, G, 

and G2, respectively. 

Now suppose that x is an element of Sgn G, for some element g of G. Then x 

stabilizes ze and g-‘e, and therefore x also stabilizes the geodesic y joining re to 

g-‘e. Condition (c) says that for any translate hte at most one of the edges adjacent 

to hze can be stabilized by x. Therefore y can meet the orbit of re only in its end 

points. This means that y contains at most two edges and g-’ =g,g2 for some 

elements gi of G;, thus (i) holds. A similar but simpler argument proves (ii). 0 

Proof of Proposition 4.7. Consider the Mayer-Vietoris sequence of G = Gi *s G2 

with coefficients in gsG. 
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The proposition will be verified when we show that these groups are 

O+O@[F-+ F”+ [F”(o,s)-t+O@O+ . . . . 

For any subgroup T of G the module @‘sG, viewed as a T-module, decomposes as 

a direct sum 

&Gz @ &((SgT). 
gcS\G/T 

The invariant submodule (gs(SgT))T is non-trivial if and only if 1 T : Sgfl TI < 03. 

Now (gsG)‘=O since S has infinite index in G. By Lemma 4.6(i) we have 

(gsG)‘l = (gsGt)‘I = 0, and by the second part (S,,G)” = (SsG2)G2 E [F and 

(~sG)S=(~sGZ)S~ [F”. 

Using Poincare duality for GZ, we obtain 

H1(G2,~~G)~~,(G,,~~G)r @ H,(SgOG2,%Sg). 
gES\G/G> 

By Lemma 4.6(ii) the intersection Sgfl G2 is non-trivial only if g E G2, but then S 

commutes with g and we have 

H1(SgnG,,~s,)=H,(s,g~s)~~‘(s,g.~s)=O. 

Therefore H1(Gz, SsG) = 0, and a similar argument shows that H’(S, gsG) = 0. 

Finally, we have to show that H’(G,, gsG) = 0. To prove this, consider the long 

exact sequence of the pair (G,, {S}). 

H’(G,, gsG) --+ H”(S, gsG) + H’(G,, S; gsG) -+ H’(G,, gsG) 

-+ H’(S, gsG). 

The first and last term of this sequence vanish, and H”(S, @sGG)= [F”. Using the 

relative version of Poincare duality, we find 

H1(Gl,S;~sG)=HH,(Gl,@-sG)= @ HZ(Sg,SKSg)~:[F”. 
gES\G/GI 

Therefore H’(G,,gsG) =O, and the proof is completed. 0 

Note added in proof. The commensurizer has also been introduced by L. Corwin, 

Proc. Amer. Math. Sot. 47 (1975) 279-287, in the context of representation theory. 
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